
The Processing Graph Method Tool (PGMT)

Richard S. Stevens

15 July 1997

U.S. Naval Research Laboratory

Washington, DC

stevens@ait.nrl.navy.mil
http://www.ait.nrl.navy.mil/pgmt/pgm2.html

Project Leader: David Kaplan

NAVAL RESEARCH LABORATORY PGMT.RSS - 2

Outline

• Introduction

• Processing Graph Method (PGM)

• PGM Tool (PGMT)

• Current Status

• Conclusions

NAVAL RESEARCH LABORATORY PGMT.RSS - 3

Introduction

• Demands for throughput outpacing performance

• Turning to distributed systems
• Software for distributed system must be tailored

- Requires team-work: application engineer with expert programmer

• Port to new architecture requires complete rewrite

• Application software very expensive

• Limited access to distributed systems

• Needs
• Architecture independent language for concurrent processing

- Expose concurrency
- Intuitive, graphic
- Easy development & maintenance

• Tool set to build low cost compilers
- Target the language to new distributed architectures
- Automate the tailoring for target architecture
- Easy, inexpensive porting of application software

NAVAL RESEARCH LABORATORY PGMT.RSS - 4

Processing Graph Method (PGM)

Reconfigurable data flow

• Directed bipartite graph (like Petri net)

• Places for data storage

• Transitions for processing

• Directed edges to indicate flow of data

• Family for multiplicity

• Included graphs for
• Hierarchical structure

• Modularity

• Reuse

• Command program for reconfiguration

NAVAL RESEARCH LABORATORY PGMT.RSS - 5

Place

• Mode specifies data type to be stored
• Data unit called atoken

• Queue
• FIFO storage with capacity (max token count)

• Unique producer

• Unique consumer

• Graph variable
• Single token storage

• Multiple producers

• Multiple consumers

• New data overwrites old

• Consumer gets most recent value

NAVAL RESEARCH LABORATORY PGMT.RSS - 6

PGM

Family

• List of members of a common type

• Each member is (recursively)
• A family

• A base type (int, float, queue, transition, ...)

• Members have
• Same base type

• Same depth of recursion

• Possibly different family sizes

NAVAL RESEARCH LABORATORY PGMT.RSS - 7

Transition

• Execution requires
• Sufficient input data

• Sufficient capacity for output data

• No internal memory between executions

• Ordinary transition
• Read & consume one token at each input in each execution

- May input a large (family-size) token

• Produce one token at each output
- May output a large (family-size) token

• User-written transition statement
- Specifies processing
- May call primitives

NAVAL RESEARCH LABORATORY PGMT.RSS - 8

Special Transitions

• May consume any number of input tokens

• May produce any number of output tokens

• Reformat data - no processing

• Specified by PGM
• Pack

• Unpack

• Uncontrolled Merge

• Others, to be added as needed

NAVAL RESEARCH LABORATORY PGMT.RSS - 9

Pack Transition

CONSUMEOFFSET
CONSUME

READOFFSET
INPUT READ

Output token:
family of
input tokens

OUTPUT

Pack transition: Assemble a specified number of input
tokens into a family and output that as a single token.

NAVAL RESEARCH LABORATORY PGMT.RSS - 10

Unpack Transition

Unpack transition: Disassemble an input token that is a
family and output the individual members as tokens.

0

0 n-1

n-1

n
INPUT

PRODUCE

OUTPUT

NAVAL RESEARCH LABORATORY PGMT.RSS - 11

Uncontrolled Merge

Uncontrolled Merge: Input one token (the first available)
from one of a family of inputs and pass it on.

Family of
Inputs

NAVAL RESEARCH LABORATORY PGMT.RSS - 12

Example of a Processing Graph

filter band-
shift

family of filter
coefficients

center frequency

feed-back
queue

fftfilter_
shift

included
graph

support
graph

NAVAL RESEARCH LABORATORY PGMT.RSS - 13

Configuration & Reconfiguration

• Command program
• Adapt structure of processing graph

in response to changing environment

• Procedure library
provides capability to
• Create a processing graph and

enable transitions to execute

• Input data into a graph

• Change values of parameters
by input to a graph variable

• Read output data from a graph

• Suspend processing

• Change graph structure
by disconnecting and reconnecting
places and transitions

NAVAL RESEARCH LABORATORY PGMT.RSS - 14

PGMT - The Project

• Demonstrate implementation of PGM
on distributed architectures

• Provide a tool set to
• Capture (by GUI) the target architecture

• Analyze the target architecture

• Capture application processing graphs

• Analyze processing graphs

• Partition processing graph into clusters

• Assign the clusters to processors in the target architecture

NAVAL RESEARCH LABORATORY PGMT.RSS - 15

Inputs to Architecture Analysis

• Number of each kind of processor

• Primitives that will run on each kind of
processor

• Execution time of each primitive on each kind
of processor

• Communication paths and times between
processors

NAVAL RESEARCH LABORATORY PGMT.RSS - 16

Technical Problems

• Assignment and scheduling
• Partition into clusters

• Static assignment and scheduling within each cluster

• Run-time assignment and scheduling of the clusters

• Reconfiguration implies subsequent
analysis, partition, assignment, and scheduling

• Architecture reconfiguration implies subsequent
analysis, partition, assignment, and scheduling

• Achieving highest throughput is NP hard
• Heuristics to find suboptimal solution

NAVAL RESEARCH LABORATORY PGMT.RSS - 17

PGMT - Current Status of Project

• Achievements to date
• Graph specification format defined (ASCII text)

• GUI capture of processing graph

• Implement on single processor

• Current effort
• Target fixed homogeneous network architecture

• Plans
• Target fixed heterogeneous network

• Target reconfigurable heterogeneous network

NAVAL RESEARCH LABORATORY PGMT.RSS - 18

Conclusions

• PGM
• Architecture independent

• Reconfigurable data flow

• Application engineer can work alone
- Expert programmer no longer needed

• PGMT
• To demonstrate a tool set to implement PGM

- On a wide variety of distributed architectures
- At relatively low cost

• All software in public domain

• Expect commercial efforts to continue work

• If successful, all will benefit
- Broader access to distributed systems

